Approximating derivatives using interpolating polynomials

1. Approximate the derivative of $t e^{-t}$ at $t=2.5$ and $h=0.1$ and $h=0.05$ using each of the formulas shown in class:

$$
\begin{gathered}
y^{(1)}(t) \approx \frac{y(t)-y(t-h)}{h} \\
y^{(1)}(t) \approx \frac{3 y(t)-4 y(t-h)+y(t-2 h)}{2 h} \\
y^{(1)}(t) \approx \frac{y(t+h)-y(t-h)}{2 h}
\end{gathered}
$$

Answer: $\quad-0.1251059133484300-0.1232976066833525-0.1230589226866095$

$$
-0.1241358072742140-0.1231657011999980-0.1231103862051720
$$

2. The derivative at $t=2.5$ for the expression in Question 1 is approximately -0.1231274979358482 . Indicate which formulas are $\mathrm{O}(h)$ and which are $\mathrm{O}\left(h^{2}\right)$, and support your claims based on the results shown in Question 1.

Answer: The errors, to four significant digits, of the above six results are

0.001978	0.0001701	-0.00006858
0.001008	0.00003820	-0.00001711

You will note the first error drops by approximately one half, while the next two drop by approximately one quarter.
3. An accurate sensor is reading a location at a rate of once every five seconds, and the reading is in meters travelled. The readings are as follows:

$$
0,0.06,1.01,4.89,14.60,33.10,62.75,104.71,158.66,222.86,294.59
$$

What is a reasonable integer approximation of the speed at the last reading in km / h ?
Answer: The speed in m/s is $\frac{3 \cdot 294.59-4 \cdot 222.86+158.66}{2 \cdot 5}=15.099$ and $1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$, so a reasonable approximation of the speed is $54 \mathrm{~km} / \mathrm{h}$.
4. Prove that the formulas in Question 1 are $\mathrm{O}(h), \mathrm{O}\left(h^{2}\right)$ and $\mathrm{O}\left(h^{2}\right)$, respectively.

Answer: See the course notes.
5. Suppose we use the approximation $y^{(1)}(t) \approx \frac{y(t-h)-y(t-2 h)}{h}$ to approximate the derivative one time step into the future of the two samples at $t-h$ and $t-2 h$. What is the error of this approximation? Answer: We have

$$
\begin{gathered}
y(t-h)=y(t)-y^{(1)}(t) h+\frac{1}{2} y^{(2)}\left(\tau_{-1}\right) h^{2} \\
y(t-2 h)=y(t)-2 y^{(1)}(t) h+2 y^{(2)}\left(\tau_{-2}\right) h^{2}
\end{gathered}
$$

Subtracting the second from the first, we have

$$
y(t-h)-y(t-2 h)=y^{(1)}(t) h+\left(\frac{1}{2} y^{(2)}\left(\tau_{-1}\right)-2 y^{(2)}\left(\tau_{-2}\right)\right) h^{2}
$$

We may therefore solve this as follows:

$$
y^{(1)}(t)=\frac{y(t-h)-y(t-2 h)}{h}-\left(\frac{1}{2} y^{(2)}\left(\tau_{-1}\right)-2 y^{(2)}\left(\tau_{-2}\right)\right) h
$$

The second expression is not a convex combination (with all coefficients greater than or equal to zero), so the best we can say is:

$$
y^{(1)}(t)=\frac{y(t-h)-y(t-2 h)}{h}+\frac{3}{2} y^{(2)}(t) h+O\left(h^{2}\right)
$$

Thus, the error is $\frac{3}{2} y^{(2)}(t) h+O\left(h^{2}\right)$, which is $\mathrm{O}(h)$, but with a much larger coefficient.
6. Suppose we use the approximation $y^{(1)}(t) \approx \frac{3 y(t-h)-4 y(t-2 h)+y(t-3 h)}{2 h}$ to approximate the derivative one time step into the future of the three samples at $t-h, t-2 h$ and $t-3 h$. What is the error of this approximation?

Answer: Let's start with first-order Taylor series expansions:

$$
\begin{gathered}
y(t-h)=y(t)-y^{(1)}(t) h+\frac{1}{2} y^{(2)}\left(\tau_{-1}\right) h^{2} \\
y(t-2 h)=y(t)-2 y^{(1)}(t) h+2 y^{(2)}\left(\tau_{-2}\right) h^{2} \\
y(t-3 h)=y(t)-3 y^{(1)}(t) h+\frac{9}{2} y^{(2)}\left(\tau_{-3}\right) h^{2}
\end{gathered}
$$

If, when we add these together, the errors all cancel out, then we would go back and use a $2^{\text {nd }}$-order Taylor series expansion.

Taking an appropriate linear combination of these, we have

$$
3 y(t-h)-4 y(t-2 h)+y(t-3 h)=2 y^{(1)}(t) h+\left(\frac{3}{2} y^{(2)}\left(\tau_{-1}\right)-8 y^{(2)}\left(\tau_{-2}\right)+\frac{9}{2} y^{(2)}\left(\tau_{-3}\right)\right) h^{2}
$$

We may therefore solve this as follows:

$$
y^{(1)}(t)=\frac{3 y(t-h)-4 y(t-2 h)+y(t-3 h)}{2 h}-\frac{1}{2}\left(\frac{3}{2} y^{(2)}\left(\tau_{-1}\right)-8 y^{(2)}\left(\tau_{-2}\right)+\frac{9}{2} y^{(2)}\left(\tau_{-3}\right)\right) h
$$

The second expression is not a convex combination (with all coefficients greater than or equal to zero), so the best we can say is:

$$
y^{(1)}(t)=\frac{3 y(t-h)-4 y(t-2 h)+y(t-3 h)}{2 h}+y^{(2)}(t) h+O\left(h^{2}\right)
$$

Thus, the error is $y^{(2)}(t) h+O\left(h^{2}\right)$, which is $\mathrm{O}(h)$ and not $\mathrm{O}\left(h^{2}\right)$.
7. A colleague suggests that a better approximation of the derivative for sampled data would be
$y^{(1)}(t) \approx \frac{1.5 y(t)-0.5 y(t-h)}{1.5 h}$ as this puts the most emphasis on the more recent, and therefore most relevant, reading. What is the error of this formula?

Answer: From a $1^{\text {stt }}$-order Taylor series, we have:

$$
y(t-h)=y(t)-y^{(1)}(t) h+\frac{1}{2} y^{(2)}(\tau) h^{2} .
$$

Thus, we have

$$
1.5 y(t-h)=1.5 y(t)-1.5 y^{(1)}(t) h+0.75 y^{(2)}(\tau) h^{2}
$$

Solving this for the derivative, we have:

$$
y^{(1)}(t)=\frac{1.5 y(t)-0.5 y(t-h)}{1.5 h}-\frac{y(t-h)}{1.5 h}-0.5 y^{(2)}(\tau) h .
$$

We note the error is $-\frac{y(t-h)}{1.5 h}-0.5 y^{(2)}(\tau) h$, so this is actually $\mathrm{O}(1 / h)$, meaning the smaller h is, the worse the approximation. Thus, this is a valid formula, but also one that has a result that is useless, except, perhaps, if we were approximating the derivative of a function that was itself essentially equal to zero.
8. Approximate the second derivative of $t e^{-t}$ at $t=2.5$ and $h=0.1$ and $h=0.05$ using each of the formulas shown in class:

$y^{(2)}(t)$	$\approx \frac{y(t+h)-2 y(t)+y(t-h)}{h^{2}}$
$y^{(2)}(t)$	$\approx \frac{y(t)-2 y(t-h)+y(t-2 h)}{h^{2}}$
Answer: $\quad y^{(2)}(t) \approx \frac{2 y(t)-5 y(t-h)+4 y(t-2 h)-y(t-3 h)}{h^{2}}$	
	0.04093981323641

9. The second derivative at $t=2.5$ for the expression in Question 8 is approximately 0.0410424993119494 . Indicate which formulas are $\mathrm{O}(h)$ and which are $\mathrm{O}\left(h^{2}\right)$, and support your claims based on the results shown in Question 8.

Answer: The errors, to four significant digits, of the above six results are

0.0001027	0.004876	-0.001354
0.00002566	0.002238	-0.0003091

You will note the first and third errors drop by approximately one quarter, while the second drops by approximately one half.
10. An accurate sensor is reading a location at a rate of once every five seconds, and the reading is in meters travelled. The readings are as follows:

$$
0,0.06,1.01,4.89,14.60,33.10,62.75,104.71,158.66,222.86,294.59
$$

What is a reasonable integer approximation of the acceleration at the last reading in $\mathrm{km} / \mathrm{h} /(10 \mathrm{~s})$? That is, what is the change in speed in km / h over a period of 10 seconds.

Answer: The speed in $\mathrm{m} / \mathrm{s}^{2}$ is $\frac{2 \cdot 294.59-5 \cdot 222.86+4 \cdot 158.66-104.71}{5^{2}}=0.1924$ and we have that $1 \mathrm{~m} / \mathrm{s}^{2}=36 \mathrm{~km} / \mathrm{h} /(10 \mathrm{~s})$, so a reasonable approximation of the acceleration is $7 \mathrm{~km} / \mathrm{h} /(10 \mathrm{~s})$.
11. Prove that the formulas in Question 8 are $\mathrm{O}\left(h^{2}\right), \mathrm{O}(h)$ and $\mathrm{O}\left(h^{2}\right)$, respectively.

Answer: See the course notes. The last requires you to have three $4^{\text {th }}$-order Taylor series expansions.
12. In class, we found the two approximations of the $2^{\text {nd }}$ derivative by finding an interpolating quadratic and taking the second derivative thereof. Suppose, however, you recall that

$$
y^{(2)}(t) \approx \frac{y^{(1)}(t)-y^{(1)}(t-h)}{h}
$$

and then substitute into this the two approximations

$$
y^{(1)}(t) \approx \frac{y(t)-y(t-h)}{h} \text { and } y^{(1)}(t-h) \approx \frac{y(t-h)-y(t-2 h)}{h} .
$$

What formula do you get?
Answer: You should get an approximation we have already found.
13. Suppose we use the approximation $y^{(1)}(t) \approx \frac{y(t-h)-2 y(t-2 h)+y(t-3 h)}{h^{2}}$ to approximate the derivative one time step into the future of the three samples at $t-h, t-2 h$ and $t-3 h$. What is the error of this approximation?

Answer: The formula for approximating the second derivative using $t, t-h$ and $t-2 h$ is already $\mathrm{O}(h)$, so this can't be any better, so let's start with second-order Taylor series expansions:

$$
\begin{aligned}
y(t-h) & =y(t)-y^{(1)}(t) h+\frac{1}{2} y^{(2)}(t) h^{2}-\frac{1}{6} y^{(3)}\left(\tau_{-1}\right) h^{3} \\
y(t-2 h) & =y(t)-2 y^{(1)}(t) h+2 y^{(2)}(t) h^{2}-\frac{4}{3} y^{(3)}\left(\tau_{-2}\right) h^{3} \\
y(t-3 h) & =y(t)-3 y^{(1)}(t) h+\frac{9}{2} y^{(2)}(t) h^{2}-\frac{9}{2} y^{(3)}\left(\tau_{-3}\right) h^{3}
\end{aligned}
$$

Taking an appropriate linear combination of these, dividing by h^{2} and isolating the $2^{\text {nd }}$ derivative, we have

$$
y^{(2)}(t)=\frac{y(t-h)-2 y(t-2 h)+y(t-3 h)}{h^{2}}-\left(-\frac{1}{6} y^{(3)}\left(\tau_{-1}\right) h^{3}+\frac{8}{3} y^{(3)}\left(\tau_{-2}\right) h^{3}-\frac{9}{2} y^{(3)}\left(\tau_{-3}\right)\right) h
$$

The second expression is not a convex combination (with all coefficients greater than or equal to zero), so the best we can say is:

$$
y^{(2)}(t)=\frac{y(t-h)-2 y(t-2 h)+y(t-3 h)}{h^{2}}+2 y^{(3)}(t) h+O\left(h^{2}\right)
$$

Thus, the error is $2 y^{(3)}(t) h+O\left(h^{2}\right)$, which is $\mathrm{O}(h)$ and not $\mathrm{O}\left(h^{2}\right)$. Note that the error coefficient is twice as large as the error was for the approximation $y^{(1)}(t) \approx \frac{y(t)-2 y(t-h)+y(t-2 h)}{h^{2}}$.

Acknowledgement: Dhyey Patel for noting one subscript was accidentally repeated in Question 6.

